[Chemotaxis in cancer] – Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. - Published on 21 08 2018
2018 Aug;19(8):885-897. doi: 10.1038/s41590-018-0145-8. Epub 2018 Jul 16.


The functions and transcriptional profiles of dendritic cells (DCs) result from the interplay between ontogeny and tissue imprinting. How tumors shape human DCs is unknown. Here we used RNA-based next-generation sequencing to systematically analyze the transcriptomes of plasmacytoid pre-DCs (pDCs), cell populations enriched for type 1 conventional DCs (cDC1s), type 2 conventional DCs (cDC2s), CD14+ DCs and monocytes-macrophages from human primary luminal breast cancer (LBC) and triple-negative breast cancer (TNBC). By comparing tumor tissue with non-invaded tissue from the same patient, we found that 85% of the genes upregulated in DCs in LBC were specific to each DC subset. However, all DC subsets in TNBC commonly showed enrichment for the interferon pathway, but those in LBC did not. Finally, we defined transcriptional signatures specific for tumor DC subsets with a prognostic effect on their respective breast-cancer subtype. We conclude that the adjustment of DCs to the tumor microenvironment is subset specific and can be used to predict disease outcome. Our work also provides a resource for the identification of potential targets and biomarkers that might improve antitumor therapies.


Read More

icon 1

HTE News and Events

icon 2

Last HTE Program
Partners Publications

icon 3

Last International

This French program is organized by ITMO Cancer, in collaboration with ITMO BCDE (Cell Biology, Development and Evolution) and ITMO Technologies for Health of the National Alliance for Life Sciences and Health (AVIESAN) with the National Cancer Institute (INCA) and Inserm within the framework of the Cancer Plan. Operational management is entrusted to Inserm.
It was launch in order to develop a critical mass of resources and skills in order to conduct interdisciplinary research projects in the field of functional heterogeneity of cellular tumor relations in their ecosystem: the "HTE Program".

Initiation of HTE Program